First Semester B.E. Degree Examination, December 2011 Engineering Mathematics - I

Time: 3 hrs.
Max. Marks:100
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A
1 a. Choose your answers for the following :
(04 Marks)
i) If $y=\frac{x}{x-1}$, then y_{n} is .
A) $\frac{(-1)^{n-1} n!}{(x-1)^{n+1}}$
B) $\frac{(-1)^{n} n!}{(x-1)^{n+1}}$
C) $\frac{(-1)^{n}(n+1)!}{(x-1)^{n+1}}$
D) $\frac{(-1)^{n} n!}{(x-1)^{n}}$
ii) If $y=\log (a x+b)$, then y_{n} is
A) $\frac{(-1)^{n} n!a^{n}}{(a x+b)^{n}}$
B) $\frac{(-1)^{n-1} n!a^{n}}{(a x+b)^{n+1}}$
C) $\frac{(-1)^{n-1}(n-1)!a^{n}}{(a x+b)^{n}}$
D) $\frac{(-1)^{n}(n-1)!a^{n}}{(a x+b)^{n+1}}$
iii) If $f(x)=\sin x, x \in(0, \pi)$, then by Rolle's theorem the value of ' x ', where the Tangent is parallel to $x-$ axis.
A) 0
B) $\pi / 2$
C) $\pi / 3$
D) $\pi / 4$
iv) Expansion of $\log (1+x)$ in powers of x is
A) $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots$.
B) $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$.
C) $1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+$
D) $\frac{x}{1!}-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\ldots$.
a. If $x=\operatorname{Tan}(\log y)$, show that $\left(1+x^{2}\right) y_{n+1}+(2 n x-1) y_{n}+n(n-1) y_{n-1}=0$.
(04 Marks)
b. State and prove Cauchy's mean value theorem.
c. Expand $f(x)=\sin \left(e^{x}-1\right)$ in power's of ' x ' upto the terms containing x^{4}.

2 a. Choose your answers for the following :
(04 Marks)
i) The indeterminate form of $\underset{x \rightarrow(}{\operatorname{Lt}}\left(\frac{x}{x-1}-\frac{(x-1)}{\log x}\right)$ is
A) $\infty-\infty$
B) $\frac{0}{0}$
C) $\frac{\infty}{\infty}$
D) None of these
ii) The angle between the radius vector and the tangent to the curve $r=k e^{\theta \operatorname{Cot} \alpha}$, where K and α are constants, is :
A) K
B) θ
C) α
D) O
iii) The Pedal equation of the curve $\mathrm{r}=\mathrm{a} \theta$ is.
A) $\mathrm{p}^{2}=\mathrm{ar}$
B) $\frac{1}{\mathrm{p}^{2}}=\frac{\mathrm{a}}{\mathrm{r}^{2}}$
C) $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{r}^{2}}+\mathrm{a}^{2}$
D) $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{r}^{2}}+\frac{\mathrm{a}^{2}}{\mathrm{r}^{4}}$
iv) The radius of curvature at any point ' t ' on the curve defined by $x=f(t), \quad y=\phi(t)$ is given by
A) $\frac{\left[\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}$
B) $\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left[\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}$
C) $\frac{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}{\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{3 / 2}}$
D) $\frac{\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)^{3 / 2}}{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}$
b. Find the angle of intersection between the curves $r^{n} \cos (n \theta)=a^{n}$ and $r^{n} \sin (n \theta)=b^{n}$.
(04 Marks)
c. Show that the radius of curvature at any point ' θ ' to the curve $x=a(\theta+\sin \theta)$, $y=a(1-\cos \theta)$, is $4 a \cos (\theta / 2)$.
(06 Marks)
d. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{1 / x}$.
(06 Marks)

3 a. Choose your answers for the following :
(04 Marks)
i) If $u=x^{y-1}$, then $\frac{\partial u}{\partial y}$ is
A) $x^{y-1} \log \mathrm{x}$
B) $(y-1) x^{y-2}$
C) $x^{y-1} \log y$
D) $x^{y} \log x$
ii) If $Z=f(u, v)$, where $u=x+c t$ and $v=x-c t$, then $\frac{\partial z}{\partial t}$ is given by
A) $\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}$
B) $\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}$
C) $c\left(\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}\right)$
D) $c\left(\frac{\partial z}{\partial v}-\frac{\partial z}{\partial u}\right)$
iii) If $x=u(1-v), y=u v$, then $J\left(\frac{x, y}{u, v)}\right)$ is equal to
A) u
B) $\frac{1}{u}$
C) uv
D) u / v
iv) The necessary condition for the function $f(x, y)$ to possess extreme values is
A) $f_{x}=f_{y}=0$
B) $f_{x x}-f_{y y}=0$
C) $\left(f_{x x}\right)\left(f_{y y}\right)-f^{2}{ }_{x y}=0$
D) $\mathrm{f}_{\mathrm{x}}>0, \mathrm{f}_{\mathrm{y}}>0$
b. If $u=f\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)$, find $x^{2} \frac{\partial u}{\partial x}$.
(04 Marks)
c. If $x+y+z=u, y+z=v$ and $z=u v w$, show that $J\left(\frac{x, y, z}{u, v, w)}\right)=u v$.
(06 Marks)
d. The Horse power required to propel a steamer is proportional to the square of the distance and cube of the velocity. If the distance is increased by 4% and velocity increased by 3%, find the percentage of increase in the Horse power.
4 a. Choose your answers for the following :
(04 Marks)
i) If $\vec{R}=x i+y j+z k,|\vec{R}|=r$, then ∇r^{2} is equal to
A) $\frac{\vec{R}}{r^{2}}$
B) $\frac{-\overrightarrow{\mathrm{R}}}{2}$
C) $\frac{\vec{R}}{\mathrm{r}}$
D) $2 \vec{R}$
ii) If $\overrightarrow{\mathrm{F}}=3 \mathrm{x}^{2} \mathrm{i}-\mathrm{xyj}+(\mathrm{a}-3) \mathrm{xzk}$ is solenoidal, then ' a ' is equal to
A) 0
B) -2
C) 2
D) 3
iii) If $\vec{A}=x^{2} i+y^{2} j+z^{2} k$, then curl \vec{A} is given by
A) $2 \mathrm{xi}+2 \mathrm{yj}++2 \mathrm{zk}$
B) 0
C) $\frac{x i+y j+z k}{2}$
D) $2 x+2 y+2 z$
iv) The scale factors for cylindrical coordinate system ($\rho \phi \mathrm{z}$) are given by
A) $(\rho, 1,1)$
B) $(1, \rho, 1)$
C) $(1,1, \rho)$
D) None of these
b. Prove that $\nabla \cdot \phi \vec{F}=\nabla \phi \cdot \vec{F}+\phi(\nabla \cdot \vec{F})$.
c. If $\vec{F}=2 x y^{3} z^{4} i+3 x^{2} y^{2} z^{4} j+4 x^{2} y^{3} z^{3} k$, find i) $(\nabla . \vec{F}) \quad$ ii) $\nabla \times \vec{F}$.
d. Obtain the expression for $\nabla \cdot \vec{F}$ in orthogonal curvilinear coordinate system $\left(u_{1} u_{2} u_{3}\right)$.
(06 Marks)

PART - B

5 a. Choose your answers for the following :
(04 Marks)
i) Given $\int_{0}^{1} x^{n} d x=\frac{1}{x+1}$, then $\frac{d^{2}}{d x^{2}} \int_{0}^{1} x^{n} d x$ gives
A) $\int_{0}^{1}(\log x)^{2} x^{n} d x=\frac{2}{(1+n)^{2}}$
B) $\int_{0}^{1}(\log x)^{2} x^{n} d x=\frac{2}{(1+n)^{3}}$
C) $\int_{0}^{1}(\log x)^{n} x^{n} d x=\frac{2}{(1+n)^{2}}$
D) $\int_{0}^{1}(\log x)^{2} x^{n} d x=\frac{-2}{(1+n)^{3}}$
ii) The value of the integral $\int_{0}^{\pi} \sin ^{6} x \cos ^{5} x d x$ is
A) 0
B) $\frac{8}{693}$
C) $\frac{8 \pi}{693}$
D) None of these
iii) The volume of the solid generated by revolving the curve $\mathrm{r}=\mathrm{a}(1+\operatorname{Cos} \theta)$ about the line $\theta=0$ is given by
A) $\frac{2 \pi}{3} \mathrm{a}^{3} \int_{0}^{\pi}(1+\operatorname{Cos} \theta)^{3} \operatorname{Sin} \theta d \theta$
B) $\frac{2 \pi}{3} \mathrm{a}^{3} \int_{0}^{\pi}(1+\operatorname{Cos} \theta)^{3} \operatorname{Cos} \theta d \theta$
C) $\frac{2 \pi}{3} a^{3} \int_{0}^{2 \pi}(1+\operatorname{Cos} \theta)^{3} \operatorname{Sin} \theta d \theta$
D) $\frac{4 \pi a^{3}}{3}$
iv) The entire length of the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ is
A) $4 a$
B) 8 a
C) $6 a$
D) 3 a
b. Obtain the reduction formula of the integral $\int \cos ^{n} x d x$.
(04 Marks)
c. Using Leibnitz rule under differentiation under integral sign, evaluate $\int_{0}^{\pi} \frac{\log (1+2 \operatorname{Cos} x)}{\operatorname{Cos} x} d x$.
(06 Marks)
d. Find the surface generated by revolving the cycloid $\mathrm{x}=\mathrm{a}(\theta-\operatorname{Sin} \theta), \mathrm{y}=\mathrm{a}(1-\operatorname{Cos} \theta)$ about its base, (consider one arc in the $1^{\text {st }}$ quadrant).
(06 Marks)
a. Choose your answers for the following :
(04 Marks)
i) The general solution of the differential equation $\frac{d y}{d x}=\sec (y / x)+y / x$ is
A) $\operatorname{Tan} y / x-\log x=c$
B) $\operatorname{Sin}(y / x)-\log x=c$
C) $\operatorname{Cosec}(y / x)-\log x=c$
D) $\operatorname{Cos}(y / x)-\log x=c$
ii) Integrating factor for the differential equation $\frac{d x}{d y}+\frac{2 x}{y}=y^{2}$ is
A) y^{2}
B) $e^{x^{2}}$
C) $e^{2 y}$
D) $e^{y^{2}}$
iii) The general solution of the differential equation $(x-y) d x+(y-x) d y=0$ is
A) $\frac{\mathrm{x}^{2}}{2}-\mathrm{y}-\frac{\mathrm{y}^{2}}{2}=\mathrm{c}$
B) $\frac{x^{2}}{2}-y+\frac{y^{2}}{2}=c$
C) $\frac{x^{2}}{2}-y x+\frac{y^{2}}{2}=c$
D) None of these
iv) Given the differential equation of $\mathrm{f}(\mathrm{r}, \theta, \mathrm{c})=0$, we get differential equation of orthogonal trajectories by changing $\mathrm{r} \frac{\mathrm{d} \theta}{\mathrm{dr}}$ by
A) $\frac{1}{r} \frac{d r}{d \theta}$
B) $-r^{2} \frac{\mathrm{dr}}{\mathrm{d} \theta}$
C) $\frac{-1}{\mathrm{r}} \frac{\mathrm{dr}}{\mathrm{d} \theta}$
D) $r \frac{d r}{d \theta}$.
b. Solve $\left(x^{2}-4 x y-2 y^{2}\right) d x+\left(y^{2}-4 x y-2 x^{2}\right) d y=0$.
(04 Marks)
c. Solve $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$.
d. Find the orthogonal trajectories of the family of curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}+\lambda}=1$ (' λ ' being the parameter).
(06 Marks)
i) The rank of the matrix $\left(\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15\end{array}\right)$ is equal to
A) 2
B) 3
C) 4
D) 1
ii) The exact solution of the system of equations $10 x+y+z=12, x+10 y+z=12$, $x+y+10 z=12$ by inspection is equal to
A) $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$
B) $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\mathrm{T}}$
C) $\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]^{\mathrm{T}}$
D) $\left[\begin{array}{lll}-1 & -1 & -1\end{array}\right]^{\mathrm{T}}$
iii) If the given system of linear equations in ' n ' variables is consistant then the number of linearly independent solution is given by
A) n
B) $n-1$
C) $r-n$
D) $n-r$
(Where ' r ' stands for rank of co-efficient, matrix).
iv) The trivial solution for the given system of equations $q \mathrm{x}-\mathrm{y}+4 \mathrm{z}=0,4 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}=0,5 \mathrm{x}+\mathrm{y}-6 \mathrm{z}=0$ is
A) $(1,2,0)$
B) (041)
C) (000)
D) $(1-50)$
b. Using elementary row transformations find the rank of the matrix $\left(\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right)$.(04 Marks)
c. Test for consistency and solve the system of equations $x+4+3 z=0, x-y+z=0$, $2 x-y+3 z=0$.
d. Applying Gauss Jordan method solve $2 x+3 y-z=5,4 x+4 y-3 z=3,2 x-3 y+2 z=2$.
a. Choose your answers for the following :
(06 Marks)
i) The linear transformation $y=A x$ is regular if
A) $|A|=0$
B) $|A|=1$
C) $|A|=-1$
D) $|A| \neq 0$
ii) The transformation $\xi=x \operatorname{Cos} \alpha-y \operatorname{Sin} \alpha, \eta=x \operatorname{Sin} \alpha+y \operatorname{Cos} \alpha$ is orthogonal then the inverse of the transformation matrix is given by
A) $\left(\begin{array}{cc}\operatorname{Cos} \alpha & \operatorname{Sin} \alpha \\ -\operatorname{Sin} \alpha & \operatorname{Cos} \alpha\end{array}\right)$
B) $\left(\begin{array}{cc}\operatorname{Cos} \alpha & -\operatorname{Sin} \alpha \\ \operatorname{Sin} \alpha & \operatorname{Cos} \alpha\end{array}\right)$
C) $\left(\begin{array}{cc}\operatorname{Sin} \alpha & \operatorname{Cos} \alpha \\ \operatorname{Cos} \alpha & -\operatorname{Sin} \alpha\end{array}\right)$
D) $\left(\begin{array}{cc}-\operatorname{Sin} \alpha & \operatorname{Cos} \alpha \\ \operatorname{Cos} \alpha & \operatorname{Sin} \alpha\end{array}\right)$
iii) The eigen vector ' x ' of the matrix ' A ' corresponding to eigen value ' λ ' satisfy the equation
A) $A X=\lambda X$
B) $\lambda(A-X)=0$
C) $\mathrm{XA}-\lambda \mathrm{A}=0$
D) $|A-\lambda I| X=0$
iv) Two square matrices A and B are similar if
A) $A=B$
B) $\mathrm{B}=\mathrm{P}^{-1} \mathrm{AP}$
C) $A^{1}=B^{1}$
D) $\mathrm{A}^{-1}=\mathrm{B}^{-1}$
b. Show that the transformation given below $y_{1}=2 x_{1}+x_{2}+x_{3}, \quad y_{2}=x_{1}+x_{2}+2 x_{3}$, $y_{3}=x_{1}-2 x_{3}$ is regular and find the inverse transformation.
(04 Marks)
c. Find the matrix P which diagonalizes the matrix $A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 0 & -2 & -1 \\ 0 & 0 & -3\end{array}\right]$.
d. Reduce the quadratic form $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ in to canonical form by an appropriate orthogonal transformation which transforms $x_{1} \quad x_{2} \quad x_{3}$ in terms of new variables $y_{1} \quad y_{2} \quad y_{3}$.
(06 Marks)

Second Semester B.E. Degree Examination, December 2011 Engineering Mathematics - II

Max. Marks:100
Time: 3 hrs .
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

1 a. Choose your answers for the following:
(04 Marks)
i) The general solution of the equation $y p^{2}+(x-y) p-x=0$ is
A) $(x-y-c)\left(x^{2}+y^{2}-c\right)=0$
B) $(y-x-c)\left(x^{2}-y^{2}-c\right)=0$
C) $(y-x-c)\left(y^{2}-x^{2}-c\right)=0$
D) $(y-x-c)\left(x^{2}+y^{2}-c\right)=0$
ii) The given differential equation is solvable for x, if it is possible to express x in terms of,
A) x and y
B) x and p
C) y and p
D) None of these
iii) The singular solution of the equation $y=p x+\frac{a}{p}$ is
A) $y^{2}=4 a x$
B) $x^{2}=4 a y$
C) $x^{2}=y$
D) $y^{2}=x$
iv) The general solution of Clairaut's equation is,
A) $y=c x+f(c)$
B) $x=c y+f(c)$
C) $y=c x-f(c)$
D) None of these
b. Solve : $p(p+y)=x(x+y)$.
(04 Marks)
c. Obtain the general solution and the singular solution of the equation, $y=2 p x+p^{2} y$.
(06 Marks)
d. Obtain the general and singular solution of Clairaut's equation, $\mathrm{xp}^{3}-\mathrm{yp}^{2}+1=0$. (06 Marks)

2 a. Choose your answers for the following :
(04 Marks)
i) The particular integral of $\left(\mathrm{D}^{2}+\mathrm{a}^{2}\right) y=\sin a x$ is
A) $-\frac{x}{2 a} \cos a x$
B) $\frac{x}{2 a} \cos a x$
C) $-\frac{a x}{2} \cos a x$
D) $\frac{a x}{2} \cos a x$
ii) The solution of the differential equation $y^{\prime \prime}+y=0$ satisfying the conditions $y(0)=1$ and $y\left(\frac{\pi}{2}\right)=2$ is
A) $y=\cos x-2 \sin x$
B) $y=2 \sin x-\cos x$
C) $y=\cos x+2 \sin x$
D) $y=C_{1} \cos x+C_{2} \sin x$
iii) P.I of $(D+1)^{2} y=x e^{-x}$ is,
A) $\frac{x}{6} e^{-x}$
B) $\frac{x^{3}}{6} e^{-x}$
C) $-\frac{x^{3}}{6} e^{-x}$
D) $\frac{x^{2}}{2} e^{-x}$
iv) P.I of $\left(D^{2}+D\right) y=x^{2}+2 x+4$ is
A) $\frac{x^{2}}{3}+4 x$
B) $\frac{x^{3}}{3}+4$
C) $\frac{x^{3}}{3}+4 x$
D) $\frac{x^{3}}{3}+4 x^{2}$
b. Solve : $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x\right)$
c. Solve : $y^{\prime \prime}-2 y^{\prime}+y=x \cos x$
d. Solve : $\frac{\mathrm{dx}}{\mathrm{dt}}-7 x+y=0, \frac{\mathrm{dy}}{\mathrm{dt}}-2 x-5 y=0$.

3 a. Choose your answers for the following :
(04 Marks)
i) The complementary function of the equation $x^{2} y^{\prime \prime}-x y^{\prime}+y=\log x$ is
A) $\mathrm{y}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \mathrm{e}^{\mathrm{x}}$
B) $y=\left(C_{1}+C_{2} \log x\right) x$
C) $y=\left(C_{1}+C_{2} x\right) x$
D) $\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{x}}$
ii) The homogeneous linear differential equation whose auxillary equation has roots 1, -1 is
A) $x^{2} y_{2}-x y_{1}+y=0$
B) $x^{2} y_{2}-x y_{1}-y=0$
C) $y^{\prime \prime}-y=0$
D) $x^{2} y_{2}+x y_{1}-y=0$
iii) To transform $x y^{\prime \prime}+y^{\prime}=\frac{1}{x}$ into a linear differential equation with constant coefficients put $\mathrm{x}=$ \qquad
A) e^{t}
B) e^{-t}
C) logt
D) None of these
iv) The solution of $x^{2} y^{\prime \prime}+x y^{\prime}=0$ is
A) $y=C_{1} \cos x+C_{2} \sin x$
B) $\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{C}_{2} \mathrm{e}^{-\mathrm{x}}$
C) $y=a \log x+b$
D) $y=C_{1}+6 x^{3}$
b. Solve $y^{\prime \prime}-6 y^{\prime}+9 y=\frac{e^{3 x}}{x^{2}}$ by the method of variation of parameters.
(04 Marks)
c. Solve : $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin [\log (1+x)]$.
(06 Marks)
d. Solve by Frobenius method the equation: $4 x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$.
(06 Marks)
4 a. Choose your answers for following :
(04 Marks)
i) The solution $\frac{\partial^{2}}{\partial y}: \sin (x y)$ is
A) $z=-x^{2} \operatorname{Sin}(x y)+y f(x)+g(x)$
B) $z=-x^{2} \operatorname{Cos}(x y)-y f(x)+g(x)$
C) $z=-\frac{\operatorname{Sin}(x y)}{x^{2}}+y f(x)+g(x)$
D) None of these
ii) A solution of $(y-z) p+(z-x) q=x-y$ is
A) $x^{2}+y^{2}+z^{2}=f(x-y-z)$
B) $x^{2}+y^{2}+z^{2}=f(x+y+z)$
C) $x^{2}-y^{2}-z^{2}=f(x+y+z)$
D) $x^{2}+y^{2}-z^{2}=f(x+y+z)$
iii) The partial differential equation obtained from $z=a x+b y+a b$ is
A) $p x+q y+z=0$
B) $p x+q y+z^{2}=0$
C) $p x-q y=z$
D) $p x+q y=z$
iv) The partial differential equation obtained from $z=e^{y} f(x+y)$ is
A) $\mathrm{p}+\mathrm{z}=\mathrm{q}$
B) $p-z=q$
C) $p-q=z$
D) None of these
b. Form the partial differential equation by eliminating the arbitrary functions from $z=f(y-2 x)+g(2 y-x)$.
(04 Marks)
c. Solve : $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
(06 Marks)
d. Solve : $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$ by the method of separation of variables, given $u(0, y)=2 e^{5 y}$.
(06 Marks)

PART - B

a. Choose your answers for the following :
(04 Marks)
i) $\int_{0}^{2} \int_{0}^{x}(x+y) d x d y=$ \qquad
A) 0
B) 1
C) 3
D) 4
ii) $\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\ldots \ldots$.
A) $\sqrt{\pi}$
B) $\frac{\sqrt{\pi}}{2}$
C) $\sqrt{\frac{\pi}{2}}$
D) $\frac{\pi}{2}$
iii) The value of $\beta(2,1)+\beta(1,2)$ is
A) 0
B) $\frac{1}{2}$
C) 2
D) 1
iv) $\int_{0}^{2} \int_{1}^{3} \int_{1}^{2} x y^{2} z d z d y d x=$ \qquad
A) 26
B) 25
C) 1
D) 0
b. Change the order of integration in $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ and hence evaluate the same. (04 Marks)
c. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing to polar coordinates.
(06 Marks)
d. Show that $\beta(m, n)=\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x$.
(06 Marks)

6 a. Choose your answers for the following:
(04 Marks)
i) If $\vec{F}=x^{2} i+x y j$ then $\int_{C} \vec{F}$. $d \vec{r}$ from $(0,0)$ to $(1,1)$ along the line $y=x$ is
A) 0
B) $\frac{2}{3}$
C) $\frac{3}{2}$
D) None of these
ii) The value of $\iint_{S}(y z d y d z+z x d z d x+x y d x d y)$ where s is the surface of unit sphere $x^{2}+y^{2}+z^{2}=1$ is
A) 0
B) 4π
C) $\frac{4 \pi}{3}$
D) 10π
iii) A necessary and sufficient condition that the line integral $\int_{\mathrm{L}} \mathrm{F} . \mathrm{dR}$ for every closed curve C is
A) $\operatorname{Curl} F=0$
B) $\operatorname{div} \mathrm{F}=0$
C) $\operatorname{CurlF} \neq 0$
D) $\operatorname{div} \mathrm{F} \neq 0$
iv) If V is the volume bounded by a surface S and $\overrightarrow{\mathrm{F}}$ is a continuously differentiable vector function then $\iiint_{V} \operatorname{div} \overrightarrow{\mathrm{~F}} \mathrm{dv}=\ldots \ldots$.
A) 0
B) $\iint_{S} \vec{F} x \hat{n} d s$
C) $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{\mathrm{n}} \mathrm{ds}$
D) None of these
b. Using Green's theorem evaluate $\int_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is bounded by $y=x$ and $y=x^{2}$.
(04 Marks)
c. Verify Stroke's theorem for the vector $\vec{F}=\left(x^{2}+y^{2}\right) i-2 x y j$ taken round the rectangle bounded by $x=0, x=a, y=0, y=b$.
(06 Marks)
d. Using divergence theorem evaluate $\int_{S} \vec{F}$.ds where $\vec{F}=4 x i-2 y^{2} j+z^{2} k$ and S is the surface bounded by the region $x^{2}+y^{2}=4, z=0, z=3$.
(06 Marks)

7 a. Choose your answers for the following :
(04 Marks)
i) If $\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\mathrm{f}(\mathrm{s})$ then $\mathrm{L}\left\{\mathrm{e}^{-\mathrm{at}} \mathrm{f}(\mathrm{t})\right\}$ is
A) $f(s-a)$
B) $f(s+a)$
C) $\mathrm{f}(\mathrm{s})$
D) None of these
ii) $L\left\{\frac{\text { Sin } a t}{t}\right\}=$ \qquad
A) $\operatorname{Cos}^{-1}\left(\frac{s}{a}\right)$
B) $\tan ^{-1} \frac{s}{a}$
C) $\frac{\pi}{2}+\tan ^{-1} \frac{s}{a}$
D) None of these
iii) $\mathrm{L}\{\mathrm{u}(\mathrm{t}+2)\}=$ \qquad
A) $\frac{\mathrm{e}^{-2 \mathrm{~s}}}{\mathrm{~s}^{2}}$
B) $e^{2 s}$
C) $\frac{e^{2 s}}{s}$
D) $\frac{e^{-2 s}}{s}$
iv) $\mathrm{L}\{\mathrm{s}(\mathrm{t})\}=$ \qquad
A) 0
B) $e^{-a s}$
C) ∞
D) 1
b. Find the value of $\int_{0}^{\infty} \mathrm{t}^{3} \mathrm{e}^{-t} \operatorname{Sin} t d t$ using Laplace transforms.
(04 Marks)
c. If $f(t)=\left\{\begin{array}{cc}t, & 0 \leq t \leq a \\ 2 a-t, & a \leq t \leq 2 a\end{array}\right.$, where $f(t+2 a)=f(t)$, show that $L\{f(t)\}=\frac{1}{s^{2}} \tan h\left(\frac{a s}{2}\right)$.
(06 Marks)
d. Express $f(t)=\left\{\begin{array}{cc}1, & 0<t \leq 1 \\ t, & 1<t \leq 2 \\ t^{2}, & t>2\end{array}\right.$ interms
transform.
a. Choose your answers for the following:
i) $L^{-1}\left\{\frac{1}{\left.s^{n}\right\}}\right\}$ is possible only when n is
A) zero
B) -ve integer
C) $+v e$ integer
D) -ve rational
ii) $L^{-1}\left\{\frac{s}{(s-1)^{3}}\right\}=\ldots \ldots$
A) $e^{-t}\left(t+t^{2}\right)$
B) $e^{t}\left(t+\frac{t^{2}}{2!}\right)$
C) $t e^{t}+t^{2} e^{t}$
D) None of these
iii) $L^{-1}\left\{\log \left(\frac{s+1}{s-1}\right)\right\}=\ldots \ldots$.
A) $2 \operatorname{Sin} t$
B) $2 \operatorname{Cosh} t$
C) $\operatorname{Sinh} t$
D) $2 \operatorname{Sinh} t$
iv) $L^{-1}\left\{\frac{\mathrm{~s}}{(2 \mathrm{~s}+3)^{2}}\right\}=\ldots \ldots$.
A) $-\frac{1}{8}(2-3 \mathrm{t}) \mathrm{e}^{\frac{-3 \mathrm{t}}{2}}$
B) $\frac{1}{8}(2-3 t) e^{\frac{-3 t}{2}}$
C) $2 e^{\frac{-3 t}{2}}-3 t e^{\frac{-3 t}{2}}$
D) None of these
b. Find $\mathrm{L}^{-1}\left\{\frac{5 \mathrm{~s}+3}{(\mathrm{~s}-1)\left(\mathrm{s}^{2}+2 \mathrm{~s}+5\right)}\right\}$.
(04 Marks)
c. Using convolution theorem evaluate $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right\}$.
(06 Marks)
d. Solve $\mathrm{y}^{\prime \prime \prime}+2 \mathrm{y}^{\prime \prime}-\mathrm{y}^{\prime}-2 \mathrm{y}=0$ given $\mathrm{y}(0)=\mathrm{y}^{\prime}(0)=0$ and $\mathrm{y}^{\prime \prime}(0)=6$ by using Laplace transform method.
(06 Marks)

First/Second Semester B.E. Degree Examination, December 2011 Engineering Chemistry

Time: 3 hrs.
Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.
PART - A

1 a. Choose your answers for the following :
i) The reference electrode used in measurement of standard reduction potential is
A) Standard calomel electrode
B) Hydrogen electrode
C) Ag -Agcl electrode
D) Standard hydrogen electrode
ii) When the concentration of chloride ions in Ag -Agcl electrode increases, the potential of the electrode
A) Increases
B) Decreases
C) Does not change
D) None of these
iii) Nernsts equation is based on
A) Thermodynamic principle
B) An equation for redox potential
C) Increase in the free energy of the system
D) None of the above
iv) In a Galvanic cell oxidation takes place at
A) Electrolyte
B) Cathode
C) Anode
D) Salt bridge
b. What are concentration cells? Derive an expression for the EMF of a concentration cell.
c. Define standard electrode potential. Explain the origin of electrode potential.
d. An electro chemical cell is formed from nickel and lead electrodes having 0.01 m NiSO 44 and $0.5 \mathrm{~m} \quad \mathrm{PbSO}_{4}$ Electrolytes. The standard electrode potentials of Ni and Pb electrodes are -0.24 V and -0.13 V respectively. Write the cell scheme, cell reaction and calculate EMF of the cell at 298 K .

2 a. Choose your answers for the following :
i) Cycle life is applicable only to
A) Primary batteries
B) Secondary batteries
C) Reserve batteries
D) All the above
ii) The electrolyte used in z_{n} - air battery is
A) aq $\mathrm{H}_{2} \mathrm{SO}_{4}$
B) Conc. KCl
C) Aq. KOH
D) $\mathrm{Aq} \cdot \mathrm{Hc} l$
iii) EMF of a battery depends on
A) Standard electrode potential
B) Temperature
C) Reaction quotient
D) All the above
iv) The fuel cells are more superior than the batteries as
A) They are light in weight
B) They are eco friendly
C) They produce current at low cost
D) All the above
b. Discuss construction and working of load-acid storage battery.
(06 Marks)
c. Explain construction and working of Ni-MH battery.
(04 Marks)
d. What are fuel cells? Describe the construction and working of $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{O}_{2}$ fuel cell.
(06 Marks)

3 a. Choose your answers for the following :
(04 Marks)
i) At high hydrogen over voltage, the rate of corrosion
A) Increases
B) Decreases
C) Increases initially and then decreases
D) Remains un changed
ii) Metal iron is coated with zinc metal to prevent corrosion. The process is
A) Anodic coating
B) Cathodic coating
C) Inorganic coating
D) Painting
iii) In corrosion, the gas which is produced in acidic medium is
A) Hydrogen
B) Oxygen
C) Nitrogen
D) Carbon dioxide
iv) The type of corrosion occuring in wire fence is
A) Galvanic corrosion
B) Inter - granular corrosion
C) Differential aeration corrosion
D) Water - line corrosion
b. Discuss :
i) Stress corrosion
ii) Water line corrosion.
(06 Marks)
c. Explain the influence of following factors on the rate of corrosion :
i) Nature of corrosion product ; ii) Anodic and cathodic area.
(04 Marks)
d. Describe the following process: i) Galvanising ; ii) Tinning.
(06 Marks)

4 a. Choose your answers for the following :
(04 Marks)
i) In electroplating, the article to be plated is subjected to pickling. This is to
A) Remove grease
B) Increase rate of plating
C) Remove oxide scale
D) Get a bright deposit
ii) The decomposition potential is equal to
A) Back EMF
B) Cell voltage
C) Current density
D) None of the above
iii) Brightners are added to plating bath in order to
A) To get uniform deposit
B) Make grain size of the deposit smaller than λ of light
C) To get thick deposit
D) Remove colour
iv) Which of the following is essential in electroless plating
A) Oxidising agent
B) Reducing agent
C) Anode
D) Electrical energy
b. What is meant by metal finishing? Explain the process of electroplating of gold. (06 Marks)
c. Discuss the influence of the following in electroplating bath solution. (04 Marks)
d. What is electroless plating? Explain electroless plating of nickel, with relavent reactions.
(06 Marks)

PART - B

5 a. Choose your answers for the following :
(04 Marks)
i) The process of breaking down hydrocarbons of higher molecular weight into lighter hydrocarbons is known as
A) Refining
B) Reforming
C) Isomerization
D) Cracking
ii) The octane number of a fuel is a measure of
A) Its ability to resist anti knocking
B) Inability to offer resistance for knocking
C) Its ability to resist knocking
D) None of the above.
iii) The addition of TEL to gasoline is
A) Decreases the octane number
B) Increases the octane number
C) Decreases the cetane number
D) Increases the cetane number
iv) Photovoltaic cell consists of
A) $p-n$ junction
B) n-type junction
C) p-type junction
D) None of the above
b. What is reforming of petroleum? Give any four reactions involved in reforming. (06 Marks)
c. Discuss the following : i) Power alcohol ; ii) Biodiesl.
(06 Marks)
d. On burning $0.85 \times 10^{-3} \mathrm{~kg}$ of a solid fuel in a bomb calorimeter, the temperature of 2.1 kg water is raised from $24^{\circ} \mathrm{C}$ to $27.6^{\circ} \mathrm{C}$. The water equivalent of calorimeter and latent heat of steam are 1.1 kg and $2454 \mathrm{~kJ} / \mathrm{kg}$ respectively. Specific heat of water is $4.187 \mathrm{~kJ} / \mathrm{kg}$. If the fuel contains 2% hydrogen, calculate its gross and net calorific values.
(04 Marks)
a. Choose your answers for the following :
(04 Marks)
i) Flame photometer is based on
A) Atomic absorption
B) Molecular absorption
C) Atomic emission
D) All the above
ii) Condensed phase rule for a two component system is
A) $\mathrm{P}+\mathrm{F}=\mathrm{C}+3$
B) $\mathrm{P}+\mathrm{F}=\mathrm{C}-2$
C) $\mathrm{P}+\mathrm{C}=\mathrm{F}+1$
D) $\mathrm{P}+\mathrm{F}=\mathrm{C}+1$
iii) At eutectic point the composition of lead and silver has
A) Lowest melting point
B) Highest melting point
C) Lowest boiling point
D) Highest boiling point
iv) The filter used in copper colorimetry is
A) 420 nm
B) 520 nm
C) 620 nm
D) 320 nm
b. State phase rule. Give phase diagram of water system and explain application of phase rule to water system.
(06 Marks)
c. Explain the application of phase-rule to lead silver system.
d. Give the components of the instruments required for potentiometry. Explain an application of potentiometry.
(04 Marks)

7 a. Choose your answers for the following :
(04 Marks)
i) Kevlar is a
A) Polyurethane
B) Polycarbonate
C) Polystyrene
D) Polyamide
ii) Which one is a conducting polymer?
A) Aniline
B) Pyrrole
C) Poly acetylene
D) Acetylene
iii) Very high molecular weight polymers will have
A) Low Tg
B) High Tg
C) Moderate Tg
D) No Tg
iv) The polymer widely used in making inner tubes of tyre is
A) Neoprene rubber
B) Butyl rubber
C) Styru - butadiene rubber
D) Natural rubber
b. What are polymers? Discuss the free radical mechanism of polymerization of ethylene.
(05 Marks)
c. Give the synthesis and an application of i) Silicone rubber ; ii) Teflon.
(06 Marks)
d. What are the deficiencies of natural rubber? Explain vulcanization of rubber.
(05 Marks)

8 a. Choose your answers for the following :
(04 Marks)
i) Chloride content of water sample is determined by
A) Colorimetric method
B) Argentometric method
C) SPADNS method
D) Gravimetric method
ii) As the temperature increases, the amount of dissolved oxygen of water sample
A) Increases
B) Decreases
C) Has no effect
D) None of the above
iii) Reverse osmosis is a method of getting pure water from
A) Sewage water
B) Industrial waste water
C) Sea water
D) River water
iv) Estimation of total hardness of water using EDTA titrant involves
A) Neutralisation reaction
B) Redox reaction
C) Precipitation reaction
D) Complexometric reaction
b. How is alkalinity of water caused? Explain the method of determination of alkalinity. (06 Marks)
c. Describe electrodialysis method of desalination of water.
(06 Marks)
d. 25 CC of waste water was mixed with 25 CC of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, acidified and refluxed. The unreacted $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ required 8.2 CC of 0.2N FAS. In a blank titration 25 CC of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ acidified required 16.4 CC of same FAS. Calculate COD of waste water.
(04 Marks)

First/Second Semester B.E. Degree Examination, December 2011
Engineering Physics
Time: 3 hrs.
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.
4. Physical constants : $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, \quad h=6.63 \times 10^{-34} \mathrm{JS}, \quad e=1.602 \times 10^{-19} \mathrm{C}$, $m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, N_{A}=6.02 \times 10^{26} / \mathrm{Kmole}, \epsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}, k=1.38 \times 10^{23} \mathrm{JK}^{-1}$.

PART - A

1 a. Choose the correct answers for the following :
(04 Marks)
i) The wavelength (λ) associated with a particle of mass, m, moving with velocity V is given by
A) $\lambda=\frac{\mathrm{h}}{\mathrm{mV}}$
B) $\lambda=\frac{\mathrm{mV}}{\mathrm{h}}$
C) $\lambda=\frac{\mathrm{hV}}{\mathrm{m}}$
D) $\lambda=\frac{\mathrm{m}}{\mathrm{hV}}$
ii) The law which describes the blackbody radiation completely is
A) Planck's law
B) Stefan's law
C) Wien's law
D) Rayleigh-Jean's law
iii) Davisson and Germer experiment relates to
A) interference
B) polarization
C) electron diffraction
D) phosphorescence
iv) The group velocity of the particle is $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$, whose phase velocity is
A) $6.06 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B) $3 \times 10^{10} \mathrm{~m} / \mathrm{s}$
C) $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D) $1.5 \times 10^{10} \mathrm{~m} / \mathrm{s}$
b. What is the matter wave? Derive an expression for de-Broglie wavelength using group velocity concept.
(05 Marks)
c. Find the energy of the neutron in eV whose de-Broglie wavelength is $1 \AA$.
(04 Marks)
d. Describe Davisson and Germer experiment for the justification of de-Broglie hypothesis.
(07 Marks)
2 a. Choose the correct answers for the following :
(04 Marks)
i) The equation of motion of matter was derived by
A) Heisemberg
B) Bohr
C) de-Broglie
D) Schroedinger
ii) The product of uncertainties between position and momentum is given by
A) $\Delta x \Delta p \geq \lambda$
B) $\Delta x \Delta p \geq \frac{\hbar}{2}$
C) $\Delta x \Delta p \geq m V$
D) $\Delta x \Delta p \geq n \hbar$
iii) Which of the following functions cannot be accepted as solutions for Schroedinger's time independent equation for all values of x ?
A) $a \sin x$
B) $a \cos x$
C) $a \sec x$
D) $a \sin x+b \cos x$
iv) The energy corresponding to the first permitted energy level for a particle in an infinite potential well is called
A) excited energy
B) zero point energy
C) meta stable state energy
D) none of these.

2 b. Obtain the time independent Schroedinger wave equation.
c. An electron is confined to a box of length $10^{-9} \mathrm{~m}$, calculate the minimum uncertainty in its velocity.
(05 Marks)
d. Show that electrons cannot exist in the nucleus of an atom.
(04 Marks)

3 a. Choose the correct answers for the following :
(04 Marks)
i) For ordinary metals, the resistivity verses temperature curve at $\mathrm{T}=0 \mathrm{~K}$
A) has a positive intercept
B) has a negative intercept
C) goes through the origin
D) none of these
ii) At T>0 K, the probability of occupancy of Fermi level is
A) 75%
B) 90%
C) 100%
D) 50%
iii) If the mobility of electron in a metal increases, the resistivity
A) decreases
B) increases
C) remains constant
D) none of these
iv) The dependence of mean free path λ on temperature T is
A) $\lambda \alpha T$
B) $\lambda \alpha \sqrt{T}$
C) $\lambda \alpha \frac{1}{T}$
D) $\lambda \alpha \frac{1}{\sqrt{T}}$
b. Using the free electron theory, derive an expression for electrical conductivity in metals.
c. Explain Fermi energy and Fermi factor. (06 Marks)
d. Calculate the Fermi velocity and the mean free path for the conduction electrons in silver, given that its Fermi energy is 5.5 eV and the relaxation time for electrons is $3.97 \times 10^{-14} \mathrm{~s}$.
(05 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) Electronic polarization \qquad .
A) increases with temperature
B) decreases with temperature
C) independent of temperature
D) none of these
ii) The polarization produced in a dielectric medium of relative permittivity 16 in presence of an electric field of $500 \mathrm{~V} / \mathrm{m}$ is \qquad .
A) $7500 \epsilon_{0}$
B) $1500 \epsilon_{0}$
C) $1600 \epsilon_{0}$
D) none of these
iii) The susceptibility of a dielectric depends on
A) intensity of the applied field
B) the dielectric polarization
C) the ratio of dielectric polarization and the intensity of the applied field
D) the ratio of the intensity of the applied field and the dielectric polarization.
iv) Piezoelectric effect is used to convert \qquad energy into \qquad energy.
A) mechanical, electrical
B) electrical, mechanical
C) thermal, electrical
D) none of these
b. Define dielectric polarization. Discuss different types of polarization mechanisms. (07 Marks)
c. The dielectric constant of sulphur is 3.4 . Assuming a cubic lattice foe its structure, calculate the electric polarizability of sulphur. Given density $=2.07 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and at weight $=32.07$.
d. Distinguish between hard and soft magnetic materials.

PART - B

5 a. Choose the correct answers for the following :
(04 Marks)
i) Emission of a photon by an excited atom due to interaction of external energy is called
A) spontaneous emission
B) stimulated emission
C) induced absorption
D) light amplification.
ii) Pumping process used in diode laser is
A) optical pumping
B) forward bias
C) electrical discharge
D) none of these
iii) Image is stored on a hologram in the form of
A) interference pattern
B) diffraction pattern
C) photography
D) none of these
iv) Important characteristic of laser beam is
A) interference
B) diffraction
C) dispersion
D) coherence
b. Describe the construction of $\mathrm{He}-\mathrm{Ne}$ laser and explain its working, with the help of energy level diagram.
(06 Marks)
c. Describe the recording and reconstruction process in holography, with the help of suitable diagrams.
(06 Marks)
d. A $\mathrm{He}-\mathrm{Ne}$ gas laser is emitting a laser beam with an average power of 4.5 mw . Find the number of photons emitted per second by the laser. The wavelength of the emitted radiation is 6328 A.
(04 Marks)

6 a. Choose the correct answers for the following :

(04 Marks)
i) The numerical aperture of an optical fibre of which refractive indices of the core and cladding are 1.563 and 1.498 , is
A) 0.446
B) 1.043
C) 0.958
D) none of these
ii) Attenuation is the \qquad in power of light as it travels in the fibre.
A) amplification
B) reduction
C) gain
D) none of these
iii) The superconductor behaves like a perfect
A) paramagnet
B) Ferro magnet
C) diamagnet
D) none of these
iv) Below critical temperature, if the temperature of superconductor is increased, the critical field
A) increases
B) decreases
C) remains constant
D) first increases, then decreases
b. Discuss Meissner effect.
(05 Marks)
c. Obtain and expression for the numerical aperture.
d. The refractive indices of the core and cladding of a step index optical fibre are 1.45 and 1.40 respectively and its care diameter is $45 \mu \mathrm{~m}$. Calculate its relative refractive index difference, V-number at wavelength 1000 nm and the number of modes.
(06 Marks)

7 a. Choose the correct answers for the following :
(04 Marks)
i) The number of atoms per unit cell in diamond is
A) 1
B) 2
C) 4
D) 8
ii) Miller indices of a plane parallel to X and Y axes are
A) $\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$
B) $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$
C) $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$
D) $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$

7 a. iii) In a Bragg's X-ray spectrometer, for every rotation θ of the turn table, the ionization chamber turns by an angle of
A) θ
B) 2θ
C) 3θ
D) 4θ
iv) The grating space of calcite is $3.036 \AA$ and for the first order Bragg reflection, the glancing angle is 12°. The path difference between the rays is
A) $0.63 \AA$
B) $6.3 \AA$
C) $1.262 \AA$
D) $12.62 \AA$
b. Explain in brief the seven crystal systems, with neat diagrams.
(07 Marks)
c. Monochromatic X-rays of wavelength $0.82 \AA$ undergo first order Bragg reflection from a crystal of cubit lattice with lattice constant $3 \AA$ at a glancing angle of $7.855 \AA$. Identify the possible planes which give rise to this reflection in terms of their Miller indices. (06 Marks)
d. Derive Bragg's equation.
(03 Marks)

8 a. Choose the correct answers for the following :
(04 Marks)
i) The bulk material reduced in two direction is known as
A) quantum dot
B) quantum wire
C) film
D) reduced structure
ii) The state of matter around the nano size is known as
A) solid state
B) liquid state
C) plasma state
D) mesoscopic state
iii) Ultrasonic waves can exist as longitudinal waves in
A) solids
B) liquids
C) gases
D) all of these
iv) The elastic behaviour of a liquid is characterized by its
A) Young's modulus
B) modulus of rigidity
C) bulk modulus
D) Poisson's ratio
b. Describe with simple illustrations, the two methods of preparation of nanomaterial.
(08 Marks)
c. What are ultrasonies? Describe a method of measuring velocity of ultrasonics waves in solids.
(08 Marks)

First/Second Semester B.E. Degree Examination, December 2011 Computer Concepts and C Programming

Time: 3 hrs .
Max. Marks:100
Note: 1. Answer FIVE full questions choosing at least two from each part.
2. Answer all objective type questions only in OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

1. a. Select the correct answer :
(04 Marks)
i) The general name given to the physical parts of a computer is \qquad
A) Software
B) Hardware
C) Firmware
D) Computer ware
ii) A byte contains \qquad number if bits.
A) 12
B) 8
C) 16
D) 32
iii) Which of these is not an example of software?
A) Utilities
B) Operating system
C) Floppy disk
D) Device drivers
iv) Which of these is not a part of information processing cycle?
A) Data sharing
B) Data collection
C) Data storage
D) Data output
b. Mention the various steps associated with the information processing cycle and explain them.
(08 Marks)
c. What is a data scanning device? Mention any four such devices.
(04 Marks)
d. i) Convert the binary number 11100111 to decimal number.
ii) Convert the decimal number 55 to binary number.
(04 Marks)
2. a. Select the correct answer :
(04 Marks)
i) A translator which reads a high level program line by line and converts its into machine language code is \qquad
A) Translator
B) Interpreter
C) Compiler
D) Assembler
ii) The size of most commonly used floppy these days is
A) 8 inch
B) 3.5 inch
C) 5.25 inch
D) 2.5 inch
iii) Which of these is not a network topology?
A) Bus
B) Ring
C) Star
D) Square
iv) Which of these is not a type of translator
A) Assembler
B) Interpreter
C) Compiler
D) Integrator
b. Mention the various functions of an operating system. Explain any two of them.
c. List and explain the basic components of a computer network.
(04 Marks)
d. Mention the different storage devices and explain one of them. (04 Marks)
3. a. Select the correct answer :
(04 Marks)
i) Which of the following is associated with software changes / modification / evolution of software?
A) Design
B) Coding
C) Testing
D) Maintenance
ii) The type of programming that is done using C is
A) High level
B) Low level
C) Both A \& B
D) None of these
iii) The function which takes a single character input from the keyboard is \qquad
A) get chr
B) get char
C) give char
D) char get
iv) Which of these is not a key word to C language?
A) float
B) static
C) delete
D) insert
b. What are C tokens? Mention them. Explain any two of them.
(08 Marks)
c. What is a datatype? Mention the basic data types available in C. (04 Marks)
d. What are variables? How are they declared?
4. a. Select the correct answer :
(04 Marks)
i) The order in which different operations in an expression are evaluated is decided by
A) Associativity
B) Precedence
C) Evaluation
D) Format
ii) The correct version of the clause to include I/O funciton library in C program is
A) \# include < io.h >
B) \# include < Std io.h >
C) include \# < io.h >
D) include \# < Std io.h >
iii) The result of evaluating the expression $7 \% 5+10.0 * 10 / 3$ is \qquad
A) 32.0
B) 32
C) 31.0
D) 31
iv) Let $\mathrm{K}=12, \mathrm{i}=3, \mathrm{~J}=5$. Consider the statement $\mathrm{K}+=\mathrm{i}+\mathrm{J}++$; After execution the values of k . i. J respectively are
A) $21,3,6$
B) $20,3,6$
C) $21,3,6$
D) $20,4,6$
b. Explain the structure of ' C ' program.
c. Write a program to find the area of a triangle given the three sides. (06 Marks)
d. With examples, illustrate any four common programming errors.

PART - B

5. a. Select the correct answer :
(04 Marks)
i) Which of the following will not be terminated by a semicolon sign?
A) Function prototype
B) Function calling statement
C) Function definition
D) None of these
ii) A function that calls itself is \qquad
A) Nested function
B) Overloaded function
C) Recursive function
D) Inline function
iii) The scope of the variables defined in a function is \qquad -
A) Local
B) Modular
C) Global
D) Universal
iv) The parameters used in a function call are called \qquad parametes.
A) Formal
B) Dummy
C) Actual
D) None of these
b. Mention the different ways of passing parameters to the function. Explain one of them. (08 Marks)
c. Write a program to accept two integers and swap their values using a function to swap.
(08 Marks)
6. a. Select the correct answer :
(04 Marks)
i) The correct statement for checking a condition in if statement is
A) if $(a=b)$
B) if $(a==b)$
C) if (a, b)
D) if (ab)
ii) The loop in which the number of iterations remain known prior to the execution of the loop is
A) for
B) while
C) do while
D) None of these
iii) The value of switch expression must be of type \qquad
D) All of these
iv) The least number of times the do - while loop will be executed is
A) 0
B) 1
C) 2
D) Both A and B
b. Distinguish between while and do-while statement.
(08 Marks)
c. Write a C program to read a positive number and reverse the given number.(08 Marks)
7. a. Select the correct answer :
(04 Marks)
i) Number of elements in an array defined by a [3] [4] is
A) 8
B) 12
C) 16
D) None of these
ii) If $\chi[4]$ is a declaration, then the first and last array index will be
A) 1,4
B) 0,3
C) 3,0
D) None of these
iii) Given int a [3] [2] $=\{1,2,3,4,5,6\}$; the element in the $3^{\text {rd }}$ row and $2^{\text {nd }}$ column is \qquad
A) 3
B) 6
C) 52
D) 4
iv) A function that is used to join two strings is
A) Strepy
B) Strlen
C) Streat
D) Stremp
b. Explain the declaration and initialization of one dimensional array with examples.
(06 Marks)
c. Write a C program to input N integers into a single dimensional array and sort them in descending order using bubble sort method. Print both given array and sorted array with suitable headings.
8. a. Select the correct answer :
i) ___ execution of instructions in a computer system is referred to as parallel computing.
A) Serial
B) Sequential
C) Accurate
D) Simultaneous
ii) Which of the following can be used as a resource in parallel computing?
A) A single computer with multiple processors.
B) An arbitrary number of computers connected by a network.
C) A combination of the above.
D) All of these.
iii) Open Mp stands for \qquad
A) Open multi - parallelism
B) Organised multi - programming
C) Open multi - processing
D) Organised multi - parallelism.
iv) An example of environment variable in OPEN MP is
A) Omp - thread - limit
B) Omp - init - lock
C) Omp - test - lock
D) Omp - get - dynamic.
b. Define concurrent processing. What is the motivation for concurrent processing?
(10 Marks)
c. What are threads? Give the advantages and disadvantages of multiple threads.
(06 Marks)

First/Second Semester B.E. Degree Examination, December 2011 Elements of Civil Engineering and Engineering Mechanics

Time: 3 hrs .
Max. Marks:100
Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

1 a. Select the correct answer :
(04 Marks)
i) Abuttment is a part of
A) Road
B) Bridge
C) Dam
D) Building
ii) Which of the following is not an irrigation infrastructure?
A) Dam
B) Canal
C) Jackwell
D) Road
iii) Surveying mainly deals with
A) Communication
B) Environment
C) Material
D) Measurement
iv) Geotechnical engineering mainly deals with
A) Space
B) Air
C) Earth
D) Water
b. What are the purposes of dam? Name any four types of dams.
c. Name : i) Types of roads
ii) Types of bridges.

2 a. Select the correct answer:
(04 Marks)
i) Two forces having the same line of action are called
A) Coplanar parallel forces
B) Non coplanar concurrent forces
C) Coplanar non concurrent forces
D) Collinear forces
ii) The magnitude of the moment is zero, when the force is applied \qquad the lever.
A) Perpendicular to
B) Inline with
C) At any angle to
D) at 60° to
iii) Following is the unit of moment of a force
A) N
B) Nm^{2}
C) $N^{2} m$
D) Nm
iv) If two forces are parallel, then they cannot be
A) Coplanar
B) Concurrent
C) Non coplanar
D) Non concurrent
b. A block of weight 200 N is kept on the inclined plane and is fixed to the plane. Find the component of weight in the direction along the plane and perpendicular to the plane as indicated (Refer Fig. Q.2(b))
(04 Marks)

Fig. Q.2(b)

Fig. Q.2(c)
c. Replace the force system shown in Fig. Q.2(c) by a single force passing through A and moment of a couple.
(06 Marks)
d. State Newton's laws of motion.
(06 Marks)

3 a. Select the correct answer :
(04 Marks)
i) The resultant of two concurrent forces becomes minimum if angle between them is
A) Zero
B) 180°
C) 90°
D) 60°
ii) If two concurrent forces each of magnitude P act at right angles to each other, their resultant is
A) 2 P
B) Zero
C) $P \sqrt{2}$
D) $(\mathrm{P} / 2)$
iii) The magnitudes of two given forces are 40 N and 60 N . Which of the following cannot be their resultant?
A) 20 N
B) 30 N
C) 40 N
D) 120 N
iv) If the magnitude of resultant of two forces, of each magnitude P, is P, then the angle between the two forces is
A) Zero
B) 45°
C) 120°
D) 60°
b. Compute the resultant of the forces, (Refer Fig.Q.3(b))
(08 Marks)

Fig.Q.3(b)

Fig. Q.3(c)
c. The three forces and a moment are applied to a bracket as shown in Fig. Q.3(c). Determine the moment, M , if the line of action of the resultant of the forces is to pass through B . Compute the resultant of the three forces and the moment.
(08 Marks)
4 a. Select the correct answer :
(04 Marks)
i) Moment of total area about its centroidal axis is
A) Twice the area
B) Three times the area
C) Zero
D) Area $x(\text { centroidal distance })^{2}$
ii) For a steel ball of radius, R, \qquad
A) The centroid and centre of gravity are different
B) The centroid and centre of gravity are same
C) The centroid is half the centre of gravity
D) None of these
iii) The co-ordinates of the centroid of a quadrant of a circle of radius, r is
A) $\overline{\mathrm{x}}=\frac{4 \mathrm{r}}{3 \pi}, \overline{\mathrm{y}}=\mathrm{r}$
B) $\bar{x}=r, \bar{y}=\frac{4 r}{3 \pi}$
C) $\overline{\mathrm{x}}=\frac{4 \mathrm{r}}{3 \pi}, \overline{\mathrm{y}}=\frac{4 \mathrm{r}}{3 \pi}$
D) $\overline{\mathrm{x}}=\mathrm{r}, \overline{\mathrm{y}}=\mathrm{r}$
iv) If the given plane figure is symmetrical about $y-y$ axis only, then the centroid lies on -
A) The intersection of $x-x$ axis and $y-y$ axis
B) $x-x$ axis
C) $y-y$ axis
D) None of these
b. Determine the centroid of a semi circular area of radius r using method of integration.
(08 Marks)
c. Locate the centroid of the shaded area. (All dimensions are in mm Refer Fig. Q.4(c))
(08 Marks)

Fig. Q.4(c)

2 of 4

10CIV13/23

PART - B

5 a: Select the correct answer :
(04 Marks)
i) A particle acted upon by two forces of equal magnitude having the same line of action is in equilibrium. The angle between the two forces is \qquad
A) 0°
B) 90°
C) 180°
D) 45°
ii) For equilibrium of a body subjected to coplanar non concurrent forces, the \qquad
A) $\sum \mathrm{Fx}=0$ and $\sum \mathrm{Fy}=0$
B) $\sum \mathrm{Fx}=0$ and $\sum \mathrm{M}=0$
C) $\Sigma \mathrm{m}=0$
D) $\Sigma \mathrm{Fx}=0, \Sigma \mathrm{Fy}=0$ and $\Sigma \mathrm{m}=0$.
iii) Lami's theorem can be applied when \qquad forces act on a body in equilibrium
A) Two
B) Three
C) Four
D) None of the above
iv) A block of weight, W , is kept on a frictionless inclined plane making an angle, θ with the horizontal. The horizontal force, P , required to keep the block in equilibrium is
A) $W \sin \theta$
B) $(W / 2) \tan \theta$
C) $W \tan \theta$
D) $(W / \tan \theta)$
b. The collar of weight 264.6 N may slide on a frictionless vertical rod and is connected to a 294 N counter weight, C. Determine the value of ' h ' for which the system is in equilibrium (Refer Fig. Q.5(b))
(06 Marks)

Fig. Q.5(b)

Fig. Q.5(c)
c. Find the force, F acting on the crank for equilibrium and also find the reaction at support. Refer Fig. Q.5(c) both arms of the crank are of 250 mm length
(10 Marks)
6 a. Select the correct answer :
(04 Marks)
i) For a beam, if one end is supported on roller and the other on hinge, the beam is said to be
A) Fixed
B) Hinged
C) Cantilever
D)Simply supported
ii) For a fixed end of a beam, the number of reaction components are \qquad
A) Three
B) Two
C) One
D) Zero
iii) A cantilever beam is one in which \qquad
A) Both ends are fixed
B) One end is fixed and other is free
C) Both ends are hinged
D) Both ends are free
iv) A horizontal simply supported beam $A B$ of length 5 m is acted upon by a vertical point load of 10 kN at a distance of 2 m from A . The reactions of A and B respectively are
A) 4 kN and 6 kN
B) 6 kN and 4 kN
C) 5 kN and 5 kN
D) 10 kN and zero

Calculate the reactions at A, for the beam shown in Fig. Q.6(b). The beam is hinged at A and b. supported by cable at C . Self weight of the beam is $2 \mathrm{kN} / \mathrm{m}$ (udl) as indicated.
(06 Marks)

Fig. Q.6(b)

Fig. Q.6(c)

For the beam shown in Fig. Q.6(c), calculate the reactions at the supports. (Hinged support at c. A and roller support at B)
(10 Marks)

7 a. Select the correct answer :
(04 Marks)
i) Angle of friction is angle between \qquad
A) The incline and horizontal
B) The normal reaction and friction force
C) The weight of the body and friction force
D) Normal reaction and resultant
ii) The force of friction depends upon \qquad
A) Area of contact
B) Roughness of surface
C) Both area of contact and roughness of surface
D) None of these
iii) Compared to static friction, kinetic friction is \qquad
A) Greater
B) Smaller
C) Zero
D) Very large
iv) If θ is the angle of friction and α is the angle of repose then which relation is correct?
A) $\theta=\frac{1}{\alpha}$
B) $\theta=\alpha$
C) $\theta=\tan \alpha$
D) $\alpha=\tan \theta$.
b. The position of the machine block B is adjusted by moving the wedge A . Knowing that the coefficient of static friction is 0.35 between all surfaces of contact, determine the force, P required to raise the block. B neglect the weight of wedge. (Refer Fig. Q.7(b). Weight of block B is 2 kN .
(10 Marks)

Fig. Q.7(b)

$-$
laker of weight 200 N
and length 4 m .

Fig. Q.7(c)
c. A ladder of 4 m weighing 200 N is supported by a horizontal floor and vertical wall as shown in Fig. Q.7(c). If a man of weight 650 N climbs to the top of the ladder, determine the indication of the ladder with reference of the floor at which the ladder is to be placed to prevent slipping. Take the co-efficient of friction for all surfaces of contact as $0.25 .(06 \mathrm{Marks})$

8 a. Select the correct answer :
(04 Marks)
i) The moment of inertia of a circle of diameter D about its centroidal axis is
A) $\pi D^{2} / 32$
B) $\pi D^{2} / 64$
C) $\pi D^{4} / 32$
D) $\pi D^{4} / 64$
ii) Moment of inertia is a \qquad
A) First moment of area
B) Second moment of area
C) Third moment of area
D) None of these
iii) Polar moment of inertia of a plane area is \qquad
A) Ix X Ty
B) Ix x + Ty
C) Ix / Ty
D) None of these
iv) The unit of moment of inertia of an area is \qquad
A) m^{2}
B) m
C) m^{4}
D) m^{3}
b. State and prove parallel axis theorem :
(06 Marks)
c. Find the moment of inertia of plane lamina (shaded) shown in Fig. Q.8(c) about $\mathrm{x}-\mathrm{x}$ axis as indicated.
(10 Marks)

Fig. Q.8(c)

All dimensions in mm

First/Second Semester B.E. Degree Examination, December 2011 Elements of Mechanical Engineering

Time: 3 hrs .
Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.
4. Use of steam tables is permitted.

PART - A

1 a. Select the correct answer :
(04 Marks)
i) The process in which using the principle of photo voltaic effect, the steam energy is directly converted into electrical energy is
A) Helio electrical process
B) Helio thermal process
C) Mechanical process
D) None of these
ii) The difference between superheated temperature and the saturation temperature of steam is called
A) Degree of superheat
B) Latent heat vapourization
C) Sensible heat
D) None of these
iii) Quality of wet steam is decided by its
A) Temperature
B) Pressure
C) Dryness fraction
D) None of these
iv) Specific volume of superheated steam (Vsup) with usual notations is
$A)=V_{g} x \frac{T_{\text {sat }}}{T_{\text {sup }}}$
B) $=\mathrm{V}_{\mathrm{g}} \times \frac{\mathrm{T}_{\text {sup }}}{\mathrm{T}_{\text {sat }}}$
$C)=V_{f} X \frac{T_{\text {sat }}}{T_{\text {sup }}}$
$D)=V_{f} \times \frac{T_{\text {sup }}}{T_{\text {sat }}}$
b. Differentiate between renewable and non-renewable sources of energy.
(06 Marks)
c. 10 Kg of wet steam of dryness fraction 0.8 , passes from a boiler to superheater at a constant pressure of 1 MPa . In the superheater its temperature increases to $340^{\circ} \mathrm{C}$. Determine the amount of heat supplied in the superheater. Assume specific heat of superheated steam $\mathrm{Cp}=$ $2.25 \mathrm{KJ} / \mathrm{Kg}{ }^{\circ} \mathrm{K}$.
(it Marks)
2 a. Select the correct answer :
(04 Miarks)
i) Utilization of the high pressure energy of the steam by expanding it in successive stages is called.
A) Impulse turbine
B) Reaction turbine
C) Compounding
D) None of these
ii) Pelton wheel is a
A) Law head impulse turbine
B) Medium head impulse turbine
C) High head impulse turbine
D) Reaction turbine
iii) In case of impulse water turbine, the entire hydro energy is converted into kinetic energy by passing the water through
A) Tailrace
B) Runner
C) Nozzle
D) None of these
iv) The cross-section of a draft tube in a turbine
A) Is uniform
B) Gradually decreases towards the outlet
C) Gradually increases towards the outlet
D) None of these
b. Explain the working principle of operation of impulse and reaction turbines.
(06 Marks)
c. Sketch and explain the working of a pelton wheel.
(10 Marks)

3 a. Select the correct answer :
(04 Marks)
i) In a four stroke C.I. engine, during suction stroke :
A) Only air is sucked in
B) Only diesel is sucked in
C) Both air and diesel sucked in
D) Either diesel or air is sucked in
ii) In two stroke engines, the number of revolutions made by the crank to complete one cycle is
A) One
B) Two
C) Three
D) Four
iii) The brakepower of an engine is always
A) Equal to
B) Less than
C) Greater than
D) Reciprocal of
iv) The inner diameter of engine cylinder is called as
A) Stroke
B) Clearance
C) Bore
D) Pitch
b. With neat sketches, explain the working of 2-stroke petrol engine.
(08 Marks)
c. A single cylinder 4-stroke I.C. engine has bore of 180 mm , stroke of 200 mm and a rated speed of 300 rpm . Torque on the brakedrum is $200 \mathrm{~N}-\mathrm{m}$ and mean effective pressure is 6 bar . It consumes 4 kg of fuel per hour. The calorificvalue of fuel is $42000 \mathrm{KJ} / \mathrm{Kg}$. Determine B.P, I.P, Brake thermal efficiency and mechanical efficiency.
(08 Marks)

4 a. Select the correct answer :
(04 Marks)
i) An ideal refrigerant should have
A) Low specific heat
B) Low viscosity
C) High thermal conductivity
D) All of these
ii) The principle of refrigeration is based on
A) Law of conservation of energy
B) I law of thermodynamics
C) II law of thermodynamics
D) Zeroth law of thermodynamics
iii) The ratio of heat extracted from the refrigerator to the work done is called
A) Performance ratio
B) Thermal efficiency
C) Co-efficient of performance
D) Performance index
iv) The most commonly used refrigerant in vapour absorption refrigeration system is
A) Freon
B) CO_{2}
C) SO_{2}
D) NH_{3}
b. Explain Vapour Absorption refrigeration system.
c. Explain room air conditioner system.
(08 Marks)

PART - B

5 a. Select the correct answer :
(04 Marks)
i) The process of thread cutting on a drilling machine is called as
A) Spot facing
B) Reaming
C) Tapping
D) Boring
ii) The operation of finishing the inner surface of a drilled hole in called as
A) Spot facing
B) Reaming
C) Tapping
D) Boring
iii) To drill a hole on a lathe, a drill bit is held in the
A) Toolpost
B) Tailstock spindle
C) Head stock
D) Compound rest
iv) Which of these drilling machines is used for mass production?
A) Bench drilling machine
B) Radial drilling machine
C) Gang drilling machine
D) Portable drilling machine
b. Draw a neat sketch of a lathe and label its parts.
(10 Marks)
c. Differentiate between counter sinking and counter boring.
(06 Marks)

6 a. Select the correct answer :
(04 Marks)
i) Irregular shape of machining is done in
A) Angular milling
B) Form milling
C) Gang milling
D) End milling
ii)
A) Sand stone
B) Corundum
C) Emery
D)Aluminium oxide
iii) In vitrified bonding process, the abrasive grains are mixed with
A) Clay and water
B) Silicate of soda
C) Shellac
D) Rubber
iv) The horizontal shaft used to mount the milling cutter is called
A) Spindle
B) Connecting rod
C) Saddle
D) Arbor
b. Draw a neat sketch of column and knee type horizontal milling machine and explain its working.
(10 Marks)
c. Sketch and explain the following operations
i) Surface grinding
ii) Cylindrical grinding
(06 Marks)

7 a. Select the correct answer :
(04 Marks)
i) Fusion welding is also known as.
A) Pressure welding
B) Resistance welding
C) Non-pressure welding
D) Thermit welding
ii) The filler material used in brazing is
A) Solder
B) Flux
C) Spelter
D) Electrode
iii) As the oil temperature increases, its viscosity
A) Increases
B) Decreases
C) Will remain constant
D) None of these
iv) A bearing in which the load acts along the axis of the shaft is called as
A) Thrust bearing
B) Journal bearing
C) Roller bearing
D) Ball bearing
b. What are the desirable properties of a good lubricant?
(06 Marks)
c. Distinguish between soldering, brazing and welding.
(10 Marks)
8 a. Select the correct answer :
(04 Marks)
i) The pulley which is used to increase the arc of contact is
A) Stepped pulley
B) Speed cone
C) Jockey pulley
D) Fast and loose pulley
ii) The ratio of speeds of the driver and driven pulley is
A) Ratio of tensions
B) Module
C) Pitch circle diameter
D) Velocity ratio
iii) The gear used to connect coplanar, parallel and Non-parallel axes shaft is
A) Helical gear
B) Spur gear
C) Bevel gear
D) Worm gear
iv) To convert rotary motion into linear motion which of the following gear is used?
A) Spur gear
B) Bevel gear
C) Rackand pinion
D) None of these
b. Define slip and creep with respect to belt drives.
c. Mention the advantages and disadvantages of belt drive.
(06 Marks)
d. A compound gear train is formed by 4 gears P.Q.R and S. Gear P meshes gear Q and R meshes gear S. Gear Q and R are compounded. P is connected to the driving shaft and S is connected to the driven shaft and power is transmitted, the details of the gears are given below. Find speed of gear P. if gear S rotates at 60 rpm
(04 Marks)
Gears $\quad P \quad$ Q $\quad R \quad S$
$\begin{array}{lllll}\text { No of teeth } & 30 & 60 & 40 & 80\end{array}$

First / Second Semester B.E. Degree Examination, December 2011 Basic Electronics

Time: 3 hrs .
Max. Marks:100
Note: 1. Answer any FIVE full questions, choosing at least two from each part.

1 a. Choose the correct answers for the following :
(04 Marks)
i) The voltage at which forward current through the diode starts increasing rapidly is called as \qquad
A) Saturation voltage
B) Breakover voltage C) cut in voltage
D) cut off voltage.
ii) Dynamic zener resistance is _in in reverse breakdown condition.
A) very high
B) high
C) zero
D) very small
iii) Smaller the ripple factor, the output will have higher - components.
A) AC
B) DC
C) Both AC and DC
D) Pulse
iv) The transformer utilization factor of a bridge type full wave rectifier is
A) 0.287
B) 0.812
C) 0.864
D) 0.48
b. Draw the AC equivalent circuit of a diode.
(04 Marks)
c. With a circuit diagram, explain the working of a centre - tapped FWR.
d. Prove that ripple factor of a HWR is 1.21 .
(06 Marks)
2 a. Choose the correct answers for the following :
(04 Marks)
i) The current conduction in bipolar junction transistor is because of
A) Electrons
B) Holes
C) Both electrons and holes
D) Current
ii) In cut off region both base - to - collector and base to emitter junctions are
A) forward biased
B) ON
C) Reverse biased
D) None of these
iii) In a transistor $\mathrm{I}_{\mathrm{B}}=30 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$. What is the value of α ?
A) 0.92
B) 0.99
C) 0.98
D) 0.96
iv) In CB-mode of a transistor when the reverse bias voltage increases, the width of depletion region also increases, which reduces the electrical base width called as
A) Depletion width
B) Early effect
C) cut in
D) punch through effect
b. What are the advantages of transistor over vacuum tube?
(04 Marks)
c. Draw and explain the input and output characteristics of CE configuration of a transistor.
(06 Marks)
d. For the CE - circuit shown in Fig. 2(d), draw the DC load line and obtain Q-point values. Assume $\beta=100$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.
(06 Marks)

Fig. Q2(d)

3 a. Choose the correct answers for the following :
(04 Marks)
i) Ideally stability factor should be zero to get - Q Q-point.
A) Unstable
B) Centre of the cutoff
C) Stable
D) None
ii) Which of the following factor affects the Q-point stability?
A) ICO
B) Coupling capacitor
C) Emitter resistor
D) Bypass capacitor.
iii) In what biasing circuit voltage shunt negative feed back is provided?
A) Voltage divider biasing
B) Fixed bias
C) Collector to base bias
D) Emitter bias
iv) Fixed bias circuit provides - stability
A) Poor
B) High
C) Better
D) Very good
b. For the circuit shown in Fig. $\mathrm{Q} 3(\mathrm{~b}), \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \beta=100$, and $\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}$. Calculate R_{1} and R_{C}. Assume $\mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}$.
(08 Marks)

Fig. Q3(b)
c. What factors cause instability of a Q-point? Explain it.
(08 Marks)
4 a. Choose the correct answers for the following :
(04 Marks)
i) JFET is a \quad device
A) Bipolar
B) Unipolar
C) Uni-Bipolar
D) None of these
ii) PNPN device is an
A) UJT
B) SCR
C) MOSFET
D) BJT
iii) The UJT relaxation oscillator is used to generate
A) Square wave signal
B) Rectangular wave signal
C) Sine wave signal
D) Triggering pulse
iv) The holding current in SCR is \qquad latching current
A) More than
B) Less than
C) Equal to
D) None of these
b. Draw the equivalent circuit of a UJT and mention its applications.
(04 Marks)
c. What are the applications of SCR?
d. Draw the drain characteristics of a n-channel JFET and explain it.
(08 Marks)

PART-B

5 a. Choose the correct answers for the following :
(04 Marks)
i) If the voltage gain of the amplifier is 0.001 , what is the value of gain is dB 's?
A) -60
B) -62
C) 60
D) 100
ii) With negative feedback, the bandwidth of an amplifier \qquad
A) Decreases
B) Increases
C) Both A \& B
D) Constant
iii) In oscillator circuit \qquad feedback is used
A) Voltage series
B) Positive
C) Negative
D) Both +ve and -ve
iv) In RC - phase shift oscillator each section of RC - network produces phase shift of -
$\overline{\text { A) } 6} 0^{\circ}$
B) 30°
C) 180°.
D) 90°
b. With a neat diagram, explain the operation of a Colpitt's oscillator.
(08 Marks)
c. Explain the operation of single stage RC coupled amplifier and draw its frequency response.
(08 Marks)
6 a. Choose the correct answers for the following :
(04 Marks)
i) For a differential amplifier $\mathrm{A}_{d}=10000$ and $\operatorname{CMRR}=10^{8}$. What is the value of A_{c} ?
A) $=10^{-4}$
B) 10^{-6}
C) 10^{4}
D) 100
ii) For an inverting op-amp if $R_{1}=R_{F}$ then circuit is called
A) Sign changer
B) Sign multiplier
C) +ve sign
D) None of these
iii) The ideal bandwidth of an op-amp is \qquad
A) Zero
B) Infinity
C) High
D) Medium
iv) Buffer and level shifter is usually a
A) Current follower
B) Collector follower
C) Resistance follower
D) Emitter follower
b. Define the following terms with respect to op-amps
i) Slew rate
ii) Power supply rejection ratio
iii) CMRR.
(06 Marks)
c. Derive the expression of output voltage of a op-amp differentiator.
(05 Marks)
d. Determine the output voltage for the op-amp adder circuit shown in Fig. Q.6(d). (05 Marks)

Fig. Q.6(d)
7 a. Choose the correct answers for the following :
(04 Marks)
i) The carrier frequency is \qquad modulating frequency
A) Lower than
B) Higher than
C) Equal to
D) None of these
ii) The bandwidth of AM wave is \qquad
A) 2 fm
B) fm
C) $\mathrm{fm} / 2$
D) None of these
iii) Find the decimal equivalent of $(10 \mathrm{AB})_{16}$
A) 3267
B) 4265
C) 4268
D) 4267
iv) What is the binary equivalent of $(1126)_{8}$?
A) 001001010110
B) 100001010110
C) 110110001001
D) 001001110010
b. Draw the block diagram of superheterodyne receiver and explain the function of each block
c. Convert $(\mathrm{BCDE})_{16}=(\quad)_{2}=(\quad)_{8}=(\quad)_{10}$. (08 Marks)
d. Subtract (57) ${ }_{10}$ from (43) 10 using 2 's complement from.
(05 Marks)

8 a. Choose the correct answers for the following :
(04 Marks)
i) For NAND- Gate both inputs are high, then output will be \qquad
A) High
B) Low
C) Tristate
D) None of these
ii) $\mathrm{Y}=\overline{\mathrm{AB}}+\mathrm{AB}$ is a Boolean expression for
A) EX - OR
B) EX - NAND
C) EX - NOR
D) None of these
iii) $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$ is a \qquad property
A) Associative
B) Commutative
C) Distributive
D) None of these
iv) The expression $Y=A B+\bar{B} C+B C$ when simplified is \qquad
A) $B+C$
B) AB
C) $\mathrm{A}+\overline{\mathrm{B}}$
D) $A B+C$
b. Simplify the following Boolean expressions
$Y=\overline{A B C}+\bar{A} B \bar{C}+A \overline{B C}+A B \bar{C}$
$Y=(A \bar{B}+\bar{A} C)(B C+B \bar{C})(A B C)$
(06 Marks)
c. Draw the logic circuit of a full adder and also write its truth table with sum and carry expressions.
(06 Marks)
d. Realize the expression $\mathrm{F}=\overline{(\mathrm{X}+\mathrm{Y}(\overline{\mathrm{Z}}+\overline{\mathrm{Y}})}$ using only NAND - Gates.

First/Second Semester B.E. Degree Examination, December 2011 Basic Electrical Engineering

Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A
1 a. Choose your answers for the following :
(04 Marks)
i) Two resistors R_{1} and R_{2} give combined resistance of 4.5Ω when in series and 1Ω when in parallel, the resistances are
A) 2Ω and 2.5Ω
B) 1Ω and 3.5Ω
C) 1.5Ω and 3Ω
D) 4Ω and 0.5Ω
ii) Kirchoff's voltage law applies to circuit with
A) linear elements only
B) non - linear elements only
C) linear, non-linear, active and passive elements
D) linear, non-linear, active, passive, tine varying as well as time invariant elements.
iii) Energy consumed by a heater of rating 1000 W by operating it for a period of 2 hrs will be
A) 1 kWh
B) 2 kWh
C) 2.5 kWh
D) 4 kWh
iv) A practical voltage source is represented by
A) aresistance in parallel with an ideal voltage source
B) a resistance in series with an ideal current source
C) a resistance in series with an ideal voltage source
D) None of the above.
b. For the circuit shown in Fig.Q.1(b), find the current supplied by each battery and power dissipated in 1Ω resistor.
(06 Marks)

Fig.Q.1(b)
c. Explain the Fleming's rules and their use in electromagnetism.
(06 Marks)
d. A solenoid 1 m in length and 10 cm in diameter has 5000 turns. Calculate the inductance and energy stored in the magnetic field when a current of 2A flows in the solenoid.
(04 Marks)
a. Choose your answers for the following :
(04 Marks)
i) Definition of root-mean square value is
A) Square root of area under the square curve over half cycle to length of base over half cycle
B) Average value by $\sqrt{2}$
C) Ratio of maximum value to average value
D) None of the above.
ii) The equation of an alternating current is $\mathrm{i}=42.42 \operatorname{Sin} 628$. The effective value will be
A) 27 A
B) 30 A
C) 2.7 A
D) 3 A
iii) The maximum and minimum values of power factor can be
A) +1 and -1
B) +1 and -5
C) +1 and 0
D) +5 and -5
iv) By adding more resistance to an RC circuit
A) the real power increases
B) the real power decreases
C) the power factor decreases
D) the phase difference increases
b. Draw the phasor diagram for RL series circuit and derive the expression for real power.
(06 Marks)
c. For the circuit shown in Fig.Q.2(c), find the values of R and C so that $v_{b}=3 v_{a}$ and v_{b} and v_{a} are in quadrature.
(06 Marks)

Fig.Q.2(c)
d. Two impedances $z_{1}=(10+j 15) \Omega$ and $z_{2}=(5-j 8) \Omega$ are connected in parallel across a voltage source. If the total current drawn is 10 A , calculate currents in z_{1} and z_{2}, and power factor of the circuit.
(04 Marks)

3 a. Choose your answers for the following:
(04 Marks)
i) The sum of the two-wattmeters readings in a 3 phase balanced system is
A) $\mathrm{V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \operatorname{Cos} \phi$
B) $3 V_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos} \phi$
C) $\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos} \phi$
D) None of these.
ii) The rated voltage of a 3 phase system is given as
A) rms phase voltage
B) peak phase voltage
C) rms line-to-line voltage
D) peak line-to-line voltage
iii) A 3 phase star connected load consumes P watts of power from a 400 V supply. If the same balanced load is connected in delta across that same supply, then power consumption is
A) 3 P
B) $\sqrt{3} \mathrm{P}$
C) $\frac{P}{3}$
D) P
iv) The phase sequence RBY denotes that
A) emf of phase-B lags that of phase-R by 120°
B) emf of phase-B leads that of phase-R by 120°
C) Both (A) and (B) are correct
D) None of these.
b. Derive the relationship between line and phase values of balanced star and delta connected load with balanced supply.
(08 Marks)
c. A 3-phase delta connected load consumes a power of 60 kW taking a lagging current of 200 A at a line voltage of $400 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the parameters of each phase. What would be the power consumed, if the load were connected in star?
(08 Marks)
4. a. Choose your answers for the following :
(04 Marks)
i) The moving coil in a dynamometer wattmeter is connected
A) in series with the fixed coil
B) across the supply
C) in series with the load
D) across the load
ii) The voltage coil of a single phase energy meter
A) is highly resistive
B) is highly inductive
C) is highly capacitive
D) has a phase angle equal to load p.f. angle.
iii) The meter constant of energy meter is given by
A) rev. $/ \mathrm{kW}$
B) rev./watt
C) rev./kWh
D) rev./kVA
iv) The primary function of a fuse is to
A) protect the appliance
B) open the circuit
C) prevent excessive current
D) protect the line
b. Explain the principle of operation of dynamometer type wattmeter.
(06 Marks)
c. With diagrams, explain the three-way control of a lamp.
(04 Marks)
d. With a neat diagram, explain the plate earthing.

PART - B

5 a. Choose your answers for the following :
(04 Marks)
i) The function of a commutator in a d.c. generator is
A) to collect current from conductors
B) to change d.c. to a.c.
C) to conduct the current to brushes
D) to change a.c. to d.c.
ii) The current drawn by armature of a d.c. motor is
A) V / Ra
B) E_{b} / R_{a}
C) $\left(\mathrm{V}-\mathrm{E}_{\mathrm{b}}\right) / \mathrm{R}_{\mathrm{a}}$
D) $\left(E_{b}-V\right) / R_{a}$
iii) The speed of a series motor at no-load is
A) zero
B) 1500 rpm
C) 3000 rpm
D) infinity
iv) The torque of a shunt motor is proportional to
A) armature current
B) applied voltage
C) square of the armature current
D) none of these.
b. What are the functions of yoke, armature, poles and brushes in a d.c. generator?
(04 Marks)
c. Derive the expression for armature torque developed in a d.c. motor.
(06 Marks)
d. A 100 kW belt driven shunt generator running at 300 rpm on 220 V bus-bars, continues to run as a motor when the belt breaks, then taking 10 kW . What will be its speed? Given $\mathrm{R}_{\mathrm{a}}=0.025 \Omega, \mathrm{R}_{\text {sh }}=60 \Omega, \mathrm{BCD}=1 \mathrm{~V}$ per brush, and $\mathrm{ARD}=0$.
(06 Marks)
6 a. Choose your answers for the following :
(04 Marks)
i) The magnitude of mutual flux in a transformer is
A) low at low loads and high at high loads
B) high at low loads and low at high loads
C) same at all loads
D) varies at low loads and constant at high loads.
ii) Transformer cores are laminated in order to
A) Simplify its construction
B) minimize eddy current loss
C) reduce cost
D) reduce hysteresis loss
iii) The transformation ratio of a transformer is
A) V_{1} / V_{2}
B) $\mathrm{N}_{2} / \mathrm{N}_{1}$
C) $\mathrm{I}_{2} / \mathrm{I}_{1}$
D) All of these
iv) A transformer is working at its maximum efficiency with iron-loss of 500 W , then its copper-loss will be
A) 500 W
B) 250 W
C) 300 W
D) 400 W
b. Explain the construction and principle of operation of a core type transformer.
(08 Marks)
c. A $50 \mathrm{kVA}, 400 / 200 \mathrm{~V}$, single phase transformer has an efficiency of 98% at full-load and 0.8 p.f., while its efficiency is 96.9% at 25% of full-load and unity p.f. Determine the iron and full load cu-losses and voltage regulation, if the terminal voltage on full-load if 195 V .
(08 Marks)
7 a. Choose your answers for the following :
(04 Marks)
i) The rotor of the synchronous generator has
A) 4 slip rings
B) 3 slip rings
C) 2 slip rings
D) No slip rings
ii) The frequency of emf generated depends on
A) Speed
B) Number of poles
C) flux
D) both (A) and (B)
iii) The distribution factor is defined as the ratio of
A) arithmetic sum of coil emf's to phasor sum of coil emf's
B) phasor sum of emf per coil to the arithmetic sum of coil emf's
C) phasor sum of coil emf's to the arithmetic sum of coil emf's
D) phasor sum of coil emf's to the per phase voltage.
iv) The salient pole type rotors are
A) smaller in axial length
B) larger in axial length
C) smalic in diameter
D) larger in diameter and smaller in axial lengih
b. What are the advantages of rotating field synchronous generator?
(85 Marks)
c. List the differences between salicnt and non-salient type rotors.
(04 Marks)
d. A 3 -phase, 6 -pole, y-conriected a.c. generator revolves at 1000 rpm . The stato- has 90 slots and 8 conductors per slot. The flux per pole is 0.05 Wb . Calculate the generated line voltage by the machine if the winding factor is 0.96 .
(07 Marks)
a. Choose your answers for the following :
(04 Marks)
i) The roto of a 3 phase induction motor always runs at
A) Synchronous speed
B) Less than synchronous speed
C) More than synchronous speed
D) None of these
ii) The frequency of rotor current or emf is given by
A) $f_{2}=s f_{1}$
B) $f_{2}=f_{1} /$ s
C) $f_{2}=(1-s) f_{1}$
D) $f_{2}=s / f_{1}$
iii) Slip of an induction motor at standstill is
A) zero
B) unity
C) greater than unity
D) negative
iv) If the rotor terminals of a 3 phase slip ring induction motor are not short-circuited and the supply is given to the stator, the motor will
A) not start
B) start running
C) run at high speed
D) run at low speed.
b. With diagram, explain the concept of rotating magnetic field.
(06 Marks)
c. Why starter is necessary? What is the significance of slip in an induction motor? (04 Marks)
d. The frequency of the emf in the stator of 4 pole induction motor is 50 Hz , and that in the rotor is 1.5 Hz . What is the slip, and at what speed is the motor is running?
(06 Marks)

USN
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |</table-markdown></div>
 First/Second Semester B.E Degree Examination, December 2011 Environmental Studies (COMMON TO ALL BRANCHES)

Time: 2 hrs .]

[Max. Marks: 50

INSTRUCTIONS TO THE CANDIDATES

1. Answer all FIFTY questions; each question carries ONE Mark.
2. Use only Black ball point pen for darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting and using whiteners on the OMR sheet are strictly prohibited.
6. Acid rain is caused by increase in the atmospheric concentration of
a) Ozone and dust
b) SO_{2} and NO_{2}
c) SO_{3} and CO
d) CO_{2} and CO
7. Gas leaked in Bhopal tragedy was
a) Potassium cynate
b) Sodium isothio cynate
c) Ethyl isocynnate
d) Methyl isocyannate
8. Noise pollution limits at residential area is
a) 45 dB
b) 80 dB
c) 55 dB
d) 90 dB
9. Lead poisoning may cause
a) Reduction in hemoglobin
b) Kidney damage
c) Mental retardation
d) All of these
10. Taj Mahal at Agra may be damaged by
a) Sulphur dioxide
b) Chlorine
c) Hydrogen
d) Oxygen
11. Which of the following are natural sources of air pollution?
a) Volcanic eruption
b) Solar flair
c) Earth quake
d) All of these
12. Environmental pollution is due to
a)Rapid urbanization
b) Deforestation
c) Afforestation
d) a and b
13. Ozone day is observed on
a) January 30
b) April 21
c) September 16
d) December 25
14. India's density of population according to census 2001
a) 350 per sq.km
b) 375 per sq.km
c) 324 per sq.km
d) 425 per sq.km
15. Green house effect is related to
a) Green trees on house
b) Global worming
c) Grass lands
d) Greenery in country
16. Hevy duty diesel vehicles mainly contribute
a) NO_{x}
b) SO_{2}
c) Particulate
d) Both a and b
17. Use of compressed natural gas (CNG) came in to effect from
a) December 2002
b) January 2002
c) December 2003
d) September 2003
18. Increase in asthma attacks has been linked to high levels of
a) Nitrogen
b) Oxygen
c) Air-borne dust particles
d) All of these
19. Urbanization is
a) Local environmental issue
b) National environmental issue
c) Both a and b
d) Not at all an issue
20. The number of babies produced per thousand individuals is called
a) Natality
b) Dermography
c) Fertility rate
d) Emigration
21. ELISA test is used to detect
a) Malaria
b) AIDS
c) Cholera
d) Tuberculosis
22. ICDS is a welfare scheme for
a) Public
b) Women
c) Men
d) Children
23. Karnataka state "pollution control board" was established is the year
a) 1974
b) 1982
c) 1986
d) 1976
24. Environmental protection Act 1986 deals with
a) Air
b) Water
c) Land
d) All of these
25. "Earth day" is observed on
a) $I^{\text {st }} \quad$ December
b) $5^{\text {th }}$ June
c) April $22^{\text {nd }}$
d) It January
26. The study of interactions between living organisms and environment is called as
a) Ecosystem
b) Ecology
c) Phytosociology
d) Biology
27. The environment which has been modified by human activities is called
a) Natural environment
b) Anthropogenic environment
c) Urban environment
d) Modern environment
28. Cauvery water dispute is between
a) India and Pakistan
b) Punjab and Haryana
c) Uttar Pradesh and Madhya Pradesh
d) Karnataka and Tamil Nadu.
29. Terrace forming is practiced in
a) Coastal areas
b) Hills
c) Deserts
d) Plains
30. Millennium development Goal's conference of united nations was held in the year
a) 2002
b) 2000
c) 2005
d) None
31. Economic security is measured on the basis of
a) Labour markets and employment
b) Income
c) Work, jobs and skills
d) All of these
32. "Remote sensing" is a
a) Satellite system
b) Ground segments
c) Sensor system
d) All of these
33. Green revolution crop verities yield increases depend on the use of
a) Inorganic fertilizers
b) Pesticides
c) Energy
d) All of these
34. Building materials cause environmental problems such as
a) Resource consumption
b) Water and air pollution
c) Habitat loss
d) All of these
35. Discharge of industrial waste water causes
a) Depletion of dissolved oxygen
b) Destroy aquatic life
c) Impair biological activity
d) All of these
36. Gold occurs in
a) Sedimentary deposits
b) Placer deposits
c) Hydrothermal deposits
d) None of these
37. EIA is used to
a) Establishing the environmental base line data
b) Impact identification on
c) Both a and b
d) To identify alternate industries
38. Sustainable use is applicable to
a) Renewable resources
b) Non renewable resources
c) Physical growth
d) None of these
39. Fluorosis is caused due to
a) No fluoride intake
b) Low fluoride intake
c) Excessive fluoride intake
d) None of these
40. Both power and manure is provided by
a) Nuclear plants
b) Thermal plants
c) Biogas plants
d) Hydroelectric plant
41. Percentage of freshwater available on the earth is
a) 2.8%
b) 2.2%
c) 0.6%
d) 2.15%
42. Surface water potential of Karnataka state is around
a) 20 M.ha-m
b) 18 M.ha-m
c) 17 M.ha-m
d) 28 M.ha-m
43. Ore is a
a) Metallic element
b) Non-metallic element
c) Plastic materials
d) Both a and b.
44. Forest is
a) Simple ecosystem
b) Complex ecosystem
c) Group of trees
d) None of these
45. Earth atmosphere contains \qquad \% nitrogen
a) 98%
b) 12%
c) 21%
d) 78%
46. Sulphur - di-oxide is used in
a) Paper manufacture
b) Textile manufacture
c) Processing of fossil fuels
d) Both a and b
47. EMR propagate energy with a velocity of
a) $3 \times 10^{6} \mathrm{~m} / \mathrm{se}$
b) $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
c) $0.3 \times 10^{8} \mathrm{~m} / \mathrm{se}$
d) $30 \times 10^{4} \mathrm{~m} / \mathrm{sec}$
48. Solar photo voltaic system are more suitable for
a) Domestic lighting
b) Street lighting
c) Small power plants
d) All of these
49. The first nuclear fission reactor in the world become critical in
a) June 1972
b) July 1974
c) December 1942
d) None of these
50. Green house gases are
a) Chlorofluro carbon
b) Oxygen
c) Chlorine
d) Chloro benzene.
51. Fossil fuel is also known as
a) Lubricating fuel
b) Liquid fuel
c) Solid fuel
d) Mineral fuel
52. Biogas is an excellent fuel when its methane content is about
a) 15%
b) 65%
c) 0%
d) 6.5%
53. Coal mining leads to adverse environmental effect like
a) Aesthetic degradation
b) Release of trace elements into water soil and air.
c) Dust pollution
d) All of these
54. "Agro forestry" environmental benefits
a) Recycling of nutrients
b) Reduction of surface run-off nutrient leaching and soil erosion.
c) Ecosystem protection
d) All of these
55. Geothermal energy is a
a) Heat energy
b) Current energy
c) wind energy
d) Solar energy
USN

Question Paper Version : A

I / II Semester B.E Degree, Examination, December 2011 CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS (COMMON TO ALL BRANCHES)

[Max. Marks: 50

INSTRUCTIONS TO THE CANDIDATES

1. Answer all FIFTY questions; each question carries ONE Mark.
2. Use only Black ball point pen for darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting and using whiteners on the OMR sheet are strictly prohibited.
6. The constitution of India derives its authority from the :
a) Parliament
b) Supreme court
c) People of India
d) constituent assembly.
7. The preamble was amended by
a) $24^{\text {th }}$ amendment
b) $42^{\text {nd }}$ amendment
c) $39^{\text {th }}$ amendment
d) none.
8. The date of commencement of Indian constitution is :
a) $26^{\text {th }}$ Nov 1949
b) $26^{\text {th }}$ Nov 1945
c) $15^{\text {th }}$ Aug 1947
d) $26^{\text {th }}$ Jan 1950
9. Fraternity means :
a) Spirit of brotherhood
b) Fatherly treatment
c) Unity and integrity of the nation
d) Elimination of economic justice
10. Gandhiji's call to all Indians 'Do and Die', is popularly known as
a) Quit India movement
b) Garibi hataoh
c) Independence movement
d) Salt satyagraha.
11. Universal adult franchise shows that India is a country which is
a) Secular
b) Socialist
c) Democratic
d) Sovereign.
12. The directive principles incorporated in the Indian constitution have been inspired by the constitution of
a) Ireland
b) USA
c) Australia
d) Canada
13. Upto what age children are required to be provided compulsory education under directive principles?
a) 18 years
b) $\mathbf{1 5}$ years
c) 14 years
d) 16 years.
14. Who said the directive principles of state policy are the "Novel feature of the Indian constitution"?
a) Motilal Nehru
b) B. R. Ambedkar
c) Jawajarlal Nehru
d) None.
15. Fundamental duties are borrowed from the constitution of
a) Russia
b) America
c) Ireland
d) Australia
16. Fundamental duties were incorporated in the constitution to
a) Curb subversive and unconstitutional activities
b) Prevent misuse of fundamental rights
c) Curb the growing power of execution
d) Make the fundamental rights more meaningful.
17. The executive power of the union government is vested in
a) The prime minister
b) The president
c) The councilministers
d) None.
18. The vacancy in the offices of the president must be filled with in
a) 3 months
b) 1 year
c) 5 years
d) 6 months.
19. The minimum age for appointment of prime minister is
a) 25 years
b) 21 years
c) 18 years
d) 30 years
20. Supreme court judge hold office until the age of
a) 65 years
b) 62 years
c) 70 years
d) No age limit
21. Who chooses the speaker?
a) President
b) Lok Sabha
c) Prime minister
d) Opposition in Lok Sabha
22. This is not a writ
a) Writ of Habeas corpus
b) Writ of mandamus
c) Writ of levitorari
d) Writ of presentation
23. The election of the president is by a system of proportional representation by means of
a) Valid transferable vote
b) Transferable vote
c) Single transferable vote
d) Legally transferable vote
24. How many types of writs are there?
a) Seven
b) Three
c) Six
d) Five
25. Respite means
a) Death due to strangulation
b) Death due to drowning
c) Awarding lesser punishment
d) Painless death.
26. Ambassadors are appointed by
a) Prime minister
b) Minister for external affairs
c) Home minister
d) President
27. The seat of supreme court is
a) Mumbai
b) Chennai
c) Bangalore
d) New Delhi
28. Which of the following is called as fourth estate?
a) Assembly
b) Parliament
c) Press
d) Lok Sabha
29. Which budget is placed first in the parliament house?
a) Railway
b) General budget
c) Financial
d) Vote of credit
30. The ground for impeachment of president is
a) Violation of the constitution
b) Misbehavior with foreign dignitaries
c) Unable to discharge duty due to ill health
d) None of these
31. Who has the power to pardon in case of capital punishment?
a) Prime minister
b) Chief justice
c) President
d) Attorney General of India
32. Who acts as the channel of communication between the president and the council of ministers
a) Prime minister
b) Deputy prime minister
c) Speaker of L.S
d) Senior most minister.
33. Governor addresses his resignation to
a) The prime minister
b) The president
c) Vice president
d) Chief minister
34. Governor is responsible to
a) President
b) Prime minister
c) Chief minister
d) Council of minister
35. The minimum age to contest for the election of legislative assembly is
a) 30
b) 21
c) 35
d) 25
36. The chief minister is appointed by
a) Prime minister
b) Governor
c) President
d) Vice President
37. What is the system of legislature in the state of Karnataka?
a) Bicameral
b) Unicameral
c) Cameral
d) None
38. How many states in India have legislative councils?
a) 5
b) 4
c) 6
d) 7
39. Who is described as the custodian of state legislative assembly?
a) Chief minister
b) Speaker
c) Leader of apposition
d) Deputy C.M.
40. This is not a ground to declare national emergency
a) War
b) Serious internal disturbance
c) Armed rebellion
d) External aggression.
41. In which year was "untouchability" abolished in India?
a) 1950
b) 1954
c) 1947
d) 1976
42. Who appoints the election commission?
a) Prime minister
b) Parliament
c) President
d) None of these
43. Amend means
a) Remove the difficulties
b) Making the meaning more clear
c) Make the object of the act more clear
d) Omit
44. Engineering Ethics is a
a) Preventive ethics
b) Developing ethics
c) Natural ethics
d) Scientifically developed ethics
45. Cooking means
a) boiling under pressure
b) Retaining results which fit theory
c) Making deceptive statements
d) Misleading the public about quality of the product
46. One of the characteristic of profession is
a) Monopoly
b) Hard work
c) Honesty
d) Competition
47. The term ethics is derived from
a) Ethical in English
b) Ethic in Latin
c) Ethicos in Greek
d) French
48. Intellectual property is protected by
a) Patents, trade marks and copy rights
b) Company documentation
c) Storage in computers
d) Scrutiny personal
49. Engineers' first obligation is towards
a) His employer
b) Public safety
c) Government
d) Clients
50. The owner of the patent right retains his patent for
a) 100 years
b) 50 years
c) 75 years
d) 20 years
51. Which one is not a trade secret?
a) Theorem
b) Equipment
c) Formulae
d) Pattern
52. The codes of Ethics can be taken as guidelines by the engineers to
a) resolve the conflicts
b) Formulate problems
c) Over come the work pressure
d) Escape from the responsibility
53. A fault tree is used to
a) assess the risk involved
b) Claim compensation
c) Take free consent
d) Improve safely.
54. Engineers will serve society better, if they are informed about
a) Morality
b) Technical standards
c) Standards of science
d) Litigation processes.
55. Reliability is built through
a) Engineer's tack record
b) Engineer's goodness
c) Engineer's communication skill
d) Engineer's obedient conduct.
